LLM 提示工程:直接提问 (Zero-Shot Prompting) 技巧与优化
大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。以大模型平台应用与开发为主,
直接提问,也称为零样本提示(Zero-Shot Prompting),即不给大语言模型提供案例,完全依靠 LLM 理解和处理能力完成任务。

上面给的提示词例子,就属于直接提问。目前大部分开源和商用的大语言模型已经经过了大量的预训练和指令调试,能够很好的理解并响应用户的直接提问。适用于目标明确、问题简单、答案确定且唯一等场景。
直接提问时,可遵循以下原则:
-
简洁
:尽量用最简短的方式表达问题。过于冗长的问题可能包含多余的信息,导致模型理解错误或答非所问。
-
具体
:避免抽象的问题,确保问题是具体的,不含糊。
-
详细上下文
:如果问题涉及特定上下文或背景信息,要提供足够的详情以帮助模型理解,即使是直接提问也不例外。
-
避免歧义
:如果一个词或短语可能有多重含义,要么明确其含义,要么重新表述以消除歧义。
-
逻辑清晰
:问题应逻辑连贯,避免出现逻辑上的混淆或矛盾,这样才能促使模型提供有意义的回答。
为大语言模型提供如下不同的提示词,得到的答案质量会有明显差距。

然而,大语言模型给出的答案有时候也不是固定的,直接提问效果在很大程度上取决于所使用的模型的理解能力和泛化能力,它无法很好地处理复杂、模糊或多义性的问题,当需要较深入的背景知识或分析时,可能无法准确了解用户的真正意图。我们可以尝试在提示词中增加示例样本、分配角色、提示写作风格/输出格式或构建思维链和思维树拆解复杂任务等方式解决。
思维导图

完整知识卡片

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用
对于0基础小白入门:
如果你是零基础小白,想快速入门大模型是可以考虑的。
一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。
包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
👉AI大模型学习路线汇总👈
大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉大模型实战案例👈
光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

👉大模型视频和PDF合集👈
观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。

👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
更多推荐



所有评论(0)